SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair
نویسندگان
چکیده
The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER.
منابع مشابه
p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene.
The p53 tumor suppressor gene product is a transcription factor involved in cell-cycle regulation, apoptosis, and DNA repair. We and others have shown that p53 is required for efficient nucleotide excision repair (NER) of UV-induced DNA lesions. p53-deficient cells are defective in the repair of UV photoproducts in genomic DNA but proficient for transcription-coupled repair. Therefore, we exami...
متن کاملDDB2 promotes chromatin decondensation at UV-induced DNA damage
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A-RING ubiquitin ligase (CRL4) complex. In this paper, we report a new functio...
متن کاملRNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has bee...
متن کاملRole of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair.
Among the earliest responses of mammalian cells to DNA damage is catalytic activation of a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Activated PARP-1 forms the polymers of ADP-ribose (pADPr or PAR) that posttranslationally modify its target proteins, such as PARP-1 and DNA repair-related proteins. Although this metabolism is known to be implicated in other repair pathways, here we ...
متن کاملXPC ( xeroderma pigmentosum , complementation group C )
Protein Description 939 amino acids. Expression Ubiquitous. Localisation Nuclear. Function Involved in the early recognition of DNA damage present in chromatine. Two proteins have been identified and implicated in (one of) the first steps of NER, i.e. the recognition of lesions in the DNA: the XPA gene product and the XPC gene product in complex with HR23B. This XPC-HR23B complex has been impli...
متن کامل